Difference between revisions of "Table arithmétique – Fragment"
(fixes to left side column 1 notes) |
|||
Line 34: | Line 34: | ||
===Left Side, Column 1, Table 1=== | ===Left Side, Column 1, Table 1=== | ||
+ | |||
+ | '''Ratios of 9 to 17''' | ||
Multiples of 9<sup>n</sup> (n from 0 to 7) and 17<sup>n</sup> (n from 8 to 1). Note that exponents of the two factors add up to 8. | Multiples of 9<sup>n</sup> (n from 0 to 7) and 17<sup>n</sup> (n from 8 to 1). Note that exponents of the two factors add up to 8. | ||
Line 51: | Line 53: | ||
===Left Side, Column 1, Table 2=== | ===Left Side, Column 1, Table 2=== | ||
− | First two | + | '''Ratios of 16 to 3''' |
+ | |||
+ | First two rows unsolved. Then, multiples of 16<sup>n</sup> (n from 0 to 5) and 3<sup>n</sup> (n from 6 to 1). Note that exponents add up to 6. | ||
<tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
Line 62: | Line 66: | ||
1 1 _ 5 9 2 . . . 110592 16<sup>3</sup> x 3<sup>3</sup> | 1 1 _ 5 9 2 . . . 110592 16<sup>3</sup> x 3<sup>3</sup> | ||
. 5 8 9 8 2 4 . . 589824 16<sup>4</sup> x 3<sup>2</sup> | . 5 8 9 8 2 4 . . 589824 16<sup>4</sup> x 3<sup>2</sup> | ||
− | . 3 1 4 5 7 2 8 . 3145728 16<sup>5</sup> x 3 | + | . 3 1 4 5 7 2 8 . 3145728 16<sup>5</sup> x 3 SU(PER) . VII . PARTIENTES |
</tab> | </tab> | ||
===Left Side. Column 1, Table 3=== | ===Left Side. Column 1, Table 3=== | ||
+ | |||
+ | '''Ratios of 7 to 13''' | ||
Then, multiples of 7<sup>n</sup> (n from 0 to 7) and 13<sup>n</sup> (n from 8 to 1). Note that exponents add up to 6. | Then, multiples of 7<sup>n</sup> (n from 0 to 7) and 13<sup>n</sup> (n from 8 to 1). Note that exponents add up to 6. | ||
Line 78: | Line 84: | ||
3 6 9 2 4 9 7 9 36924979 7<sup>5</sup> x 13<sup>3</sup> | 3 6 9 2 4 9 7 9 36924979 7<sup>5</sup> x 13<sup>3</sup> | ||
1 9 8 8 2 6 8 1 19882681 7<sup>6</sup> x 13<sup>2</sup> | 1 9 8 8 2 6 8 1 19882681 7<sup>6</sup> x 13<sup>2</sup> | ||
− | 1 0 ? 0 6 0 5 9 10?06059 7<sup>7</sup> x 13 4th cell obscures “7”, should | + | 1 0 ? 0 6 0 5 9 10?06059 7<sup>7</sup> x 13 4th cell obscures “7”, should be 10706059 SU(PER) . VI . PARTIENTES |
</tab> | </tab> | ||
Revision as of 14:45, 2 August 2022
Notes on the numerical tables of Table arithmétique (Fragment), Latin 9377, f. 113[1] in the Bibliothèque nationale de France (Paris).
Description of Fragment
The fragment consists of a single sheet of parchment, folded in half, with numerical tables written on both the left and right sides of the inside (flesh-side) of the parchment.
A fascimile of the pages can be viewed at [1]:
outside (reverse of left side)
outside (reverse of right side)
On the left side are 2 columns, each with 3 tables (and each with a cut off table at the bottom. On the right side are 2 columns each with 1 continuous table.
Aspices
0123456789
The Tables
Left Side, Column 1, Table 1
Ratios of 9 to 17
Multiples of 9n (n from 0 to 7) and 17n (n from 8 to 1). Note that exponents of the two factors add up to 8.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | transcription | factors | -note |
---|---|---|---|---|---|---|---|---|---|---|---|
9 | 7 | 5 | 7 | 5 | 7 | 4 | 4 | 1 | 975757441 | 178 | error: missing leading 6, should be 6975757441 |
6 | 9 | 3 | _ | 4 | 8 | _ | 5 | 7 | 693048057 | 9 x 177 | error: missing leading 3, should be 3693048057 |
9 | 5 | 5 | 1 | 4 | 3 | _ | 8 | 9 | 955143089 | 92 x 176 | error: missing leading 1, should be 1955143089 |
1 | 3 | 5 | _ | 7 | 5 | 7 | 5 | 3 | 135075753 | 93 x 175 | error: missing a zero, should be 1035075753 |
5 | 4 | 7 | 9 | 8 | 1 | 2 | 8 | 1 | 547981281 | 94 x 174 | |
2 | 9 | _ | 1 | _ | 7 | 7 | 3 | 7 | 290107737 | 95 x 173 | |
1 | 5 | 3 | 5 | 8 | 6 | 4 | 4 | 9 | 153586449 | 96 x 172 | |
_ | 8 | 1 | 3 | 1 | _ | 4 | 7 | 3 | 081310473 | 97 x 17 | SU(PER) OCTO PARTIENT |
- ↑ Note that both "9377" and "113" are prime. Coincidence?
Left Side, Column 1, Table 2
Ratios of 16 to 3
First two rows unsolved. Then, multiples of 16n (n from 0 to 5) and 3n (n from 6 to 1). Note that exponents add up to 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | transcription | factors | -note |
---|---|---|---|---|---|---|---|---|---|---|---|
5 | 6 | 2 | 8 | 9 | _ | 6 | 2 | 5 | 562890625 | 58 x 11 x 131 | |
3 | 6 | 6 | 8 | 7 | 5 | . | . | . | 366875 | 54 x 587 | |
7 | 2 | 9 | . | . | . | . | . | . | 729 | 36 | |
3 | 8 | 8 | 8 | . | . | . | . | . | 3888 | 16 x 35 | |
2 | _ | 7 | 3 | 6 | . | . | . | . | 20735 | 162 x 34 | |
1 | 1 | _ | 5 | 9 | 2 | . | . | . | 110592 | 163 x 33 | |
. | 5 | 8 | 9 | 8 | 2 | 4 | . | . | 589824 | 164 x 32 | |
. | 3 | 1 | 4 | 5 | 7 | 2 | 8 | . | 3145728 | 165 x 3 | SU(PER) . VII . PARTIENTES |
Left Side. Column 1, Table 3
Ratios of 7 to 13
Then, multiples of 7n (n from 0 to 7) and 13n (n from 8 to 1). Note that exponents add up to 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | transcription | factors | -note |
---|---|---|---|---|---|---|---|---|---|---|---|
8 | 1 | 5 | 7 | 3 | 0 | 7 | 2 | 1 | 815730721 | 138 | |
4 | 3 | 9 | 2 | 3 | 9 | 6 | 1 | 9 | 439239619 | 7 x 137 | |
2 | 3 | 6 | 5 | 1 | 3 | 6 | 4 | 1 | 236513641 | 72 x 136 | |
1 | 2 | 7 | 3 | 5 | 3 | 4 | 9 | 9 | 127353499 | 73 x 135 | |
6 | 8 | 5 | 7 | 4 | 9 | 6 | 1 | 68574961 | 74 x 134 | ||
3 | 6 | 9 | 2 | 4 | 9 | 7 | 9 | 36924979 | 75 x 133 | ||
1 | 9 | 8 | 8 | 2 | 6 | 8 | 1 | 19882681 | 76 x 132 | ||
1 | 0 | ? | 0 | 6 | 0 | 5 | 9 | 10?06059 | 77 x 13 | 4th cell obscures “7”, should be 10706059 SU(PER) . VI . PARTIENTES |
Background
The numbers are "apices" of early Arabic numbers.
in a table from "Histoire de la Mathematique" by J.E. Montucla, published in 1757