Difference between revisions of "Table arithmétique – Fragment"
(→Left Side, Column 1, Table 1: added table 2) |
(added some links) |
||
(25 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
Notes on the numerical tables of [https://fragmentarium.ms/overview/F-cfux Table arithmétique (Fragment)], Latin 9377, f. 113<ref>Note that both "9377" and "113" are prime. Coincidence?</ref> in the [https://www.bnf.fr/fr Bibliothèque nationale de France (Paris)]. | Notes on the numerical tables of [https://fragmentarium.ms/overview/F-cfux Table arithmétique (Fragment)], Latin 9377, f. 113<ref>Note that both "9377" and "113" are prime. Coincidence?</ref> in the [https://www.bnf.fr/fr Bibliothèque nationale de France (Paris)]. | ||
+ | |||
+ | Other links: | ||
+ | |||
+ | https://gallica.bnf.fr/ark:/12148/btv1b525133302/f238.item | ||
+ | |||
+ | https://archivesetmanuscrits.bnf.fr/ark:/12148/cc77406z | ||
<gallery mode="traditional" widths=300px heights=300px> | <gallery mode="traditional" widths=300px heights=300px> | ||
Line 25: | Line 31: | ||
+ | ==Aspices== | ||
+ | <span style="font-family: Gerbert; font-size: 40px;">0123456789</span> | ||
Line 31: | Line 39: | ||
==The Tables== | ==The Tables== | ||
− | ===Left Side, Column 1, Table 1=== | + | Transcription Notation: |
+ | |||
+ | "_" indicates an empty cell in the grid (i.e. the absence of an aspex, what we would represent as a zero). | ||
+ | |||
+ | "." indicates a space (without borders drawn) outside of the grid. | ||
+ | |||
+ | The symbol P with a stroke through its stem in the marginalia is interpreted as the abbreviation for the suffix "per". | ||
+ | |||
+ | ===Left Side=== | ||
+ | ====Left Side, Column 1, Table 1==== | ||
+ | |||
+ | '''Ratios of 9 to 17''' | ||
Multiples of 9<sup>n</sup> (n from 0 to 7) and 17<sup>n</sup> (n from 8 to 1). Note that exponents of the two factors add up to 8. | Multiples of 9<sup>n</sup> (n from 0 to 7) and 17<sup>n</sup> (n from 8 to 1). Note that exponents of the two factors add up to 8. | ||
− | <tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | + | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> |
− | 1 2 3 4 5 6 7 8 9 transcription factors note | + | 1 2 3 4 5 6 7 8 9 transcription factors note marginalia |
− | 9 7 5 7 5 7 4 4 1 975757441 17<sup>8</sup> | + | 9 7 5 7 5 7 4 4 1 975757441 17<sup>8</sup> truncated: missing leading 6, should be 6975757441 |
− | 6 9 3 _ 4 8 _ 5 7 693048057 9 x 17<sup>7</sup> | + | 6 9 3 _ 4 8 _ 5 7 693048057 9 x 17<sup>7</sup> truncated: missing leading 3, should be 3693048057 |
− | 9 5 5 1 4 3 _ 8 9 955143089 9<sup>2</sup> x 17<sup>6</sup> | + | 9 5 5 1 4 3 _ 8 9 955143089 9<sup>2</sup> x 17<sup>6</sup> truncated: missing leading 1, should be 1955143089 |
− | 1 3 5 _ 7 5 7 5 3 135075753 9<sup>3</sup> x 17<sup>5</sup> error: missing a zero, should be 1035075753 | + | 1 3 5 _ 7 5 7 5 3 135075753 9<sup>3</sup> x 17<sup>5</sup> error: missing a zero, should be 1035075753 |
− | 5 4 7 9 8 1 2 8 1 547981281 9<sup>4</sup> x 17<sup>4</sup> | + | 5 4 7 9 8 1 2 8 1 547981281 9<sup>4</sup> x 17<sup>4</sup> |
− | 2 9 _ 1 _ 7 7 3 7 290107737 9<sup>5</sup> x 17<sup>3</sup> | + | 2 9 _ 1 _ 7 7 3 7 290107737 9<sup>5</sup> x 17<sup>3</sup> |
− | 1 5 3 5 8 6 4 4 9 153586449 9<sup>6</sup> x 17<sup>2</sup> | + | 1 5 3 5 8 6 4 4 9 153586449 9<sup>6</sup> x 17<sup>2</sup> |
− | _ 8 1 3 1 _ 4 7 3 081310473 9<sup>7</sup> x 17 | + | _ 8 1 3 1 _ 4 7 3 081310473 9<sup>7</sup> x 17 "SU(PER) OCTO PARTIENT" |
+ | </tab> | ||
+ | |||
+ | ====Left Side, Column 1, Table 2==== | ||
+ | |||
+ | '''Ratios of 16 to 3''' | ||
+ | |||
+ | First two rows unsolved. Then, multiples of 16<sup>n</sup> (n from 0 to 5) and 3<sup>n</sup> (n from 6 to 1). Note that exponents add up to 6. | ||
+ | |||
+ | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
+ | 1 2 3 4 5 6 7 8 9 transcription factors note marginalia | ||
+ | 5 6 2 8 9 _ 6 2 5 562890625 5<sup>8</sup> x 11 x 131 | ||
+ | 3 6 6 8 7 5 . . . 366875 5<sup>4</sup> x 587 | ||
+ | 7 2 9 . . . . . . 729 3<sup>6</sup> | ||
+ | 3 8 8 8 . . . . . 3888 16 x 3<sup>5</sup> | ||
+ | 2 _ 7 3 6 . . . . 20735 16<sup>2</sup> x 3<sup>4</sup> | ||
+ | 1 1 _ 5 9 2 . . . 110592 16<sup>3</sup> x 3<sup>3</sup> | ||
+ | . 5 8 9 8 2 4 . . 589824 16<sup>4</sup> x 3<sup>2</sup> | ||
+ | . 3 1 4 5 7 2 8 . 3145728 16<sup>5</sup> x 3 "SU(PER) . VII . PARTIENTES" | ||
+ | </tab> | ||
+ | |||
+ | ====Left Side. Column 1, Table 3==== | ||
+ | |||
+ | '''Ratios of 7 to 13''' | ||
+ | |||
+ | Multiples of 7<sup>n</sup> (n from 0 to 7) and 13<sup>n</sup> (n from 8 to 1). Note that exponents add up to 8. | ||
+ | |||
+ | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
+ | 1 2 3 4 5 6 7 8 9 transcription factors note marginalia | ||
+ | 8 1 5 7 3 0 7 2 1 815730721 13<sup>8</sup> | ||
+ | 4 3 9 2 3 9 6 1 9 439239619 7 x 13<sup>7</sup> | ||
+ | 2 3 6 5 1 3 6 4 1 236513641 7<sup>2</sup> x 13<sup>6</sup> | ||
+ | 1 2 7 3 5 3 4 9 9 127353499 7<sup>3</sup> x 13<sup>5</sup> | ||
+ | . 6 8 5 7 4 9 6 1 68574961 7<sup>4</sup> x 13<sup>4</sup> | ||
+ | . 3 6 9 2 4 9 7 9 36924979 7<sup>5</sup> x 13<sup>3</sup> | ||
+ | . 1 9 8 8 2 6 8 1 19882681 7<sup>6</sup> x 13<sup>2</sup> | ||
+ | . 1 0 ? 0 6 0 5 9 10?06059 7<sup>7</sup> x 13 4th cell obscures “7”, should be 10706059 "SU(PER) . VI . PARTIENTES" | ||
+ | </tab> | ||
+ | |||
+ | ====Left Side. Column 1, Table 4 ==== | ||
+ | |||
+ | cut off after 1 row. | ||
+ | |||
+ | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
+ | 1 2 3 4 5 6 7 8 9 transcription factors note marginalia | ||
+ | ? 4 3 5 8 8 0 7 6 ?43588076 ? | ||
+ | </tab> | ||
+ | |||
+ | ====Left Side. Column 2, Table 1 ==== | ||
+ | |||
+ | '''Powers of 9''' | ||
+ | |||
+ | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
+ | 8 7 6 5 4 3 2 1 transcription (r2l) factors note marginalia | ||
+ | . . . . . . . 9 9 9 | ||
+ | . . . . . . 1 8 81 9<sup>2</sup> | ||
+ | . . . . . 9 2 7 729 9<sup>3</sup> | ||
+ | . . . . 1 6 5 6 6561 9<sup>4</sup> | ||
+ | . . . 9 4 0 9 5 59049 9<sup>5</sup> | ||
+ | . . 1 8 8 1 3 5 531881 9<sup>6</sup> | ||
+ | . 9 6 9 2 8 7 4 4782969 9<sup>7</sup> | ||
+ | 1 2 7 6 4 0 3 4 43046721 9<sup>8</sup> "Copulatiu sesquino[vum] et sesquioctava" | ||
+ | </tab> | ||
+ | |||
+ | ====Left Side. Column 2, Table 2 ==== | ||
+ | |||
+ | '''Ratios of 8 to 9''' | ||
+ | |||
+ | Multiples of 8<sup>n</sup> (n from 1 to 8) and 9<sup>n</sup> (n from 7 to 0). Note that exponents add up to 8. | ||
+ | |||
+ | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
+ | 8 7 6 5 4 3 2 1 transcription (r2l) factors note marginalia | ||
+ | 2 5 7 3 6 2 8 3 38263752 8 x 9<sup>7</sup> | ||
+ | 4 2 2 2 1 0 4 3 34012224 8<sup>2</sup> x 9<sup>6</sup> | ||
+ | 8 8 0 3 3 2 0 3 30233088 8<sup>3</sup> x 9<sup>5</sup> | ||
+ | 6 5 8 3 7 8 6 2 26873856 8<sup>4</sup> x 9<sup>4</sup> | ||
+ | 2 7 8 7 8 8 3 2 23887872 8<sup>5</sup> x 9<sup>3</sup> | ||
+ | 4 6 6 3 3 2 1 2 21233664 8<sup>6</sup> x 9<sup>2</sup> | ||
+ | 8 6 3 4 7 8 8 1 18874368 8<sup>7</sup> x 9 | ||
+ | 6 1 2 7 7 7 6 1 16777216 8<sup>8</sup> "Copulatiu sesquioctava et sesquiseptiumus" | ||
+ | </tab> | ||
+ | |||
+ | ====Left Side. Column 2, Table 3 ==== | ||
+ | |||
+ | '''Ratios of 8 to 7''' | ||
+ | |||
+ | Multiples of 8<sup>n</sup> (n from 7 to 0) and 7<sup>n</sup> (n from 1 to 8). Note that exponents add up to 8. | ||
+ | |||
+ | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
+ | 8 7 6 5 4 3 2 1 transcription (r2l) factors note marginalia | ||
+ | 4 6 0 0 8 6 4 1 14680064 8<sup>7</sup> x 7 | ||
+ | 6 5 0 5 4 8 2 1 12845056 8<sup>6</sup> x 7<sup>2</sup> | ||
+ | 4 2 4 9 3 2 1 1 11239424 8<sup>5</sup> x 7<sup>3</sup> | ||
+ | 6 9 4 4 3 8 9 . 9834496 8<sup>4</sup> x 7<sup>4</sup> | ||
+ | 4 8 1 5 0 6 8 . 8605184 8<sup>3</sup> x 7<sup>5</sup> | ||
+ | 6 3 5 9 2 5 7 . 7529536 8<sup>2</sup> x 7<sup>6</sup> | ||
+ | 4 4 3 8 8 5 6 . 6588344 8 x 7<sup>7</sup> | ||
+ | 1 0 8 4 6 7 5 . 5764801 7<sup>8</sup> "Copulatiai sesquiseptum et sesquisexta" | ||
+ | </tab> | ||
+ | |||
+ | ===Right Side=== | ||
+ | |||
+ | ====Right Side, Column 1, Rows 1-9==== | ||
+ | |||
+ | '''Powers of 9''' | ||
+ | |||
+ | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
+ | 1 2 3 4 5 6 7 8 9 transcription (l2r) factors note marginalia | ||
+ | 9 . . . . . . . . 9 9 | ||
+ | 8 1 . . . . . . . 81 9<sup>2</sup> | ||
+ | 7 2 9 . . . . . . 729 9<sup>3</sup> | ||
+ | 6 5 6 1 . . . . . 6561 9<sup>4</sup> | ||
+ | 5 9 _ 4 9 . . . . 59049 9<sup>5</sup> | ||
+ | 5 3 1 4 4 1 . . . 531441 9<sup>6</sup> | ||
+ | 4 7 8 2 9 6 9 . . 4782969 9<sup>7</sup> | ||
+ | 4 3 _ 4 6 7 2 1 . 43046721 9<sup>8</sup> | ||
+ | 3 8 7 4 2 _ 4 8 9 387420489 9<sup>9</sup> "SU(PER) OCTO PARTIENTES" | ||
+ | </tab> | ||
+ | |||
+ | ====Right Side, Column 1, Rows 10-18==== | ||
+ | |||
+ | '''Ratios of 8 to 9''' | ||
+ | |||
+ | Multiples of 8<sup>n</sup> (n from 1 to 9) and 9<sup>n</sup> (n from 8 to 0). Note that exponents add up to 9. | ||
+ | |||
+ | |||
+ | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
+ | 1 2 3 4 5 6 7 8 9 transcription (l2r) factors note marginalia | ||
+ | 3 4 4 3 7 3 7 6 8 344373768 8 x 9<sup>8</sup> | ||
+ | 3 _ 6 1 1 _ _ 1 6 306110016 8<sup>2</sup> x 9<sup>7</sup> | ||
+ | 2 7 2 _ 9 7 7 9 2 272097792 8<sup>3</sup> x 9<sup>6</sup> | ||
+ | 2 4 1 8 6 4 7 _ 4 241864704 8<sup>4</sup> x 9<sup>5</sup> | ||
+ | 2 1 4 9 9 _ 8 4 8 214990848 8<sup>5</sup> x 9<sup>4</sup> | ||
+ | 1 9 1 1 _ 2 9 7 6 191102976 8<sup>6</sup> x 9<sup>3</sup> | ||
+ | 1 6 9 8 6 9 3 1 2 169869312 8<sup>7</sup> x 9<sup>2</sup> | ||
+ | 1 5 _ 9 9 4 9 4 4 150994944 8<sup>8</sup> x 9 | ||
+ | 1 3 4 2 1 7 7 2 8 134217728 8<sup>9</sup> "SU(PER) 7 PARTIENTES" | ||
+ | </tab> | ||
+ | |||
+ | ====Right Side, Column 1, Rows 19-27==== | ||
+ | |||
+ | '''Ratios of 8 to 7''' | ||
+ | |||
+ | Multiples of 8<sup>n</sup> (n from 8 to 0) and 7<sup>n</sup> (n from 1 to 9). Note that exponents add up to 9. | ||
+ | |||
+ | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
+ | 1 2 3 4 5 6 7 8 9 transcription (l2r) factors note marginalia | ||
+ | 1 1 7 4 4 _ 5 1 2 117440512 8<sup>8</sup> x 7 | ||
+ | 1 _ 2 7 6 _ 4 4 8 102760448 8<sup>7</sup> x 7<sup>2</sup> | ||
+ | . 8 9 9 1 5 3 9 2 89915392 8<sup>6</sup> x 7<sup>3</sup> | ||
+ | . 7 8 6 7 5 9 6 8 78675968 8<sup>5</sup> x 7<sup>4</sup> | ||
+ | . 6 8 8 4 1 4 7 2 68841472 8<sup>4</sup> x 7<sup>5</sup> | ||
+ | . 6 2 3 6 2 8 8 60236288 8<sup>3</sup> x 7<sup>6</sup> | ||
+ | . 5 2 7 6 7 5 2 52706752 8<sup>2</sup> x 7<sup>7</sup> | ||
+ | . 4 6 1 1 8 4 8 46118408 8 x 7<sup>8</sup> "SU(PER) 6 PARTIENTES" | ||
+ | . 4 3 5 3 6 7 40353607 7<sup>9</sup> | ||
</tab> | </tab> | ||
+ | ====Right Side, Column 2, Rows 1-9==== | ||
+ | |||
+ | '''Ratios of 17 to 9''' | ||
+ | |||
+ | Multiples of 17<sup>n</sup> (n from 9 to 1) and 9<sup>n</sup> (n from 0 to 8). Note that exponents add up to 9. | ||
+ | |||
+ | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
+ | 12 11 10 9 8 7 6 5 4 3 2 1 transcription (r2l) factors note marginalia | ||
+ | 7 9 4 6 7 8 7 8 5 8 1 1 118587876497 17<sup>9</sup> | ||
+ | 9 6 9 6 1 8 1 8 7 2 6 . 62781816969 17<sup>8</sup> x 9 | ||
+ | 3 1 5 2 3 4 7 3 2 3 3 . 33237432513 17<sup>7</sup> x 9<sup>2</sup> | ||
+ | 1 _ 8 7 8 2 6 9 5 7 1 . 17596287801 17<sup>6</sup> x 9<sup>3</sup> | ||
+ | 7 7 7 1 8 6 5 1 3 9 . . 9315681777 17<sup>5</sup> x 9<sup>4</sup> | ||
+ | 9 2 5 1 3 8 1 3 9 4 . . 4931831529 17<sup>4</sup> x 9<sup>5</sup> | ||
+ | 3 3 6 9 6 9 _ 1 6 2 . . 2610969633 17<sup>3</sup> x 9<sup>6</sup> | ||
+ | 1 4 _ 8 7 2 2 8 3 1 . . 1382278041 17<sup>2</sup> x 9<sup>7</sup> | ||
+ | 7 5 2 4 9 7 1 3 7 ( ) . . 731794257 17 x 9<sup>8</sup> | ||
+ | </tab> | ||
+ | |||
+ | ====Right Side, Column 2, Rows 10-12==== | ||
+ | |||
+ | '''Ratios of 9 to 5?''' | ||
+ | |||
+ | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
+ | 12 11 10 9 8 7 6 5 4 3 2 1 transcription (r2l) factors note marginalia | ||
+ | 5 7 3 9 5 3 3 4 4 8 3 . 38443359375 9<sup>7</sup> x 5<sup>9</sup> | ||
+ | . . . 5 2 1 3 _ 5 _ 2 . 20503125 9<sup>6</sup> x 5<sup>5</sup> | ||
+ | . . . . . . 5 3 9 _ 1 . 10935 9<sup>5</sup> x 5 | ||
+ | </tab> | ||
+ | |||
+ | ====Right Side, Column 2, Rows 13-18==== | ||
+ | |||
+ | '''Ratios of 16 to 3?''' | ||
+ | |||
+ | Multiples of 2<sup>n</sup> (n = 3,7,11,15,19) and 3<sup>n</sup> (n= 6 to 1). The product increases 16x (2<sup>4</sup>) between rows. | ||
+ | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
+ | 12 11 10 9 8 7 6 5 4 3 2 1 transcription (r2l) factors note marginalia | ||
+ | . . . . . . 2 3 8 5 . . 5832 2<sup>3</sup> x 3<sup>6</sup> | ||
+ | . . . . . 4 _ 1 1 3 . . 31104 2<sup>7</sup> x 3<sup>5</sup> | ||
+ | . . . . 8 8 8 5 6 1 . . 165888 2<sup>11</sup> x 3<sup>4</sup> | ||
+ | . . . 6 3 7 4 8 8 . . . 884736 2<sup>15</sup> x 3<sup>3</sup> | ||
+ | . . 2 9 5 8 1 7 4 . . . 4718592 2<sup>19</sup> x 3<sup>2</sup> | ||
+ | . 4 2 8 5 6 1 5 2 . . . 25165824 2<sup>2</sup>3 x 3 | ||
+ | </tab> | ||
+ | |||
+ | ====Right Side, Column 2, Rows 19-27==== | ||
+ | |||
+ | '''Ratios of 13 to 7''' | ||
+ | |||
+ | Multiples of 13<sup>n</sup> (n from 9 to 1) and 7<sup>n</sup> (n from 0 to 8). Note that exponents add up to 9. | ||
+ | |||
+ | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | ||
+ | 12 11 10 9 8 7 6 5 4 3 2 1 transcription (r2l) factors note marginalia | ||
+ | 3 7 3 9 9 4 4 _ 6 . 1 . 10604499373 13<sup>9</sup> | ||
+ | 7 4 _ 5 1 1 _ 1 7 5 . . 5710115047 13<sup>8</sup> x 7 | ||
+ | 3 3 3 7 7 6 4 7 _ 3 . . 3074677333 13<sup>7</sup> x 7<sup>2</sup> | ||
+ | 7 8 4 5 9 5 5 5 6 1 . . 1655595487 13<sup>6</sup> x 7<sup>3</sup> | ||
+ | 3 9 4 4 7 4 1 9 8 . . . 891474493 13<sup>5</sup> x 7<sup>4</sup> | ||
+ | 7 2 7 4 2 _ _ 8 4 . . . 480024727 13<sup>4</sup> x 7<sup>5</sup> | ||
+ | 3 5 8 4 7 4 8 5 2 . . . 258474853 13<sup>3</sup> x 7<sup>6</sup> | ||
+ | 7 6 7 8 7 1 9 3 1 . . . 139178767 13<sup>2</sup> x 17<sup>7</sup> | ||
+ | 3 1 4 2 4 9 4 7 ( ) . . . 74942413 13 x 7<sup>8</sup> | ||
+ | </tab> | ||
− | === | + | ====Right Side, Column 2, Rows 28-29==== |
− | + | '''Ratios of 11 (cut off)''' | |
− | <tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> | + | <tab sep=tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top> |
− | + | 12 11 10 9 8 7 6 5 4 3 2 1 transcription (r2l) factors note marginalia | |
− | + | 1 9 6 7 4 9 7 5 3 2 . . 2357947691 11<sup>9</sup> | |
− | 7 2 | + | 6 8 2 3 5 1 6 8 2 1 . . 1286153286 2 x 3 x 11<sup>8</sup> |
− | |||
− | |||
− | 1 | ||
− | |||
− | |||
</tab> | </tab> | ||
Latest revision as of 17:41, 7 August 2022
Notes on the numerical tables of Table arithmétique (Fragment), Latin 9377, f. 113[1] in the Bibliothèque nationale de France (Paris).
Other links:
https://gallica.bnf.fr/ark:/12148/btv1b525133302/f238.item
https://archivesetmanuscrits.bnf.fr/ark:/12148/cc77406z
Description of Fragment
The fragment consists of a single sheet of parchment, folded in half, with numerical tables written on both the left and right sides of the inside (flesh-side) of the parchment.
A fascimile of the pages can be viewed at [1]:
outside (reverse of left side)
outside (reverse of right side)
On the left side are 2 columns, each with 3 tables (and each with a cut off table at the bottom. On the right side are 2 columns each with 1 continuous table.
Aspices
0123456789
The Tables
Transcription Notation:
"_" indicates an empty cell in the grid (i.e. the absence of an aspex, what we would represent as a zero).
"." indicates a space (without borders drawn) outside of the grid.
The symbol P with a stroke through its stem in the marginalia is interpreted as the abbreviation for the suffix "per".
Left Side
Left Side, Column 1, Table 1
Ratios of 9 to 17
Multiples of 9n (n from 0 to 7) and 17n (n from 8 to 1). Note that exponents of the two factors add up to 8.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | transcription | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|---|
9 | 7 | 5 | 7 | 5 | 7 | 4 | 4 | 1 | 975757441 | 178 | truncated: missing leading 6, should be 6975757441 | |
6 | 9 | 3 | _ | 4 | 8 | _ | 5 | 7 | 693048057 | 9 x 177 | truncated: missing leading 3, should be 3693048057 | |
9 | 5 | 5 | 1 | 4 | 3 | _ | 8 | 9 | 955143089 | 92 x 176 | truncated: missing leading 1, should be 1955143089 | |
1 | 3 | 5 | _ | 7 | 5 | 7 | 5 | 3 | 135075753 | 93 x 175 | error: missing a zero, should be 1035075753 | |
5 | 4 | 7 | 9 | 8 | 1 | 2 | 8 | 1 | 547981281 | 94 x 174 | ||
2 | 9 | _ | 1 | _ | 7 | 7 | 3 | 7 | 290107737 | 95 x 173 | ||
1 | 5 | 3 | 5 | 8 | 6 | 4 | 4 | 9 | 153586449 | 96 x 172 | ||
_ | 8 | 1 | 3 | 1 | _ | 4 | 7 | 3 | 081310473 | 97 x 17 | "SU(PER) OCTO PARTIENT" |
- ↑ Note that both "9377" and "113" are prime. Coincidence?
Left Side, Column 1, Table 2
Ratios of 16 to 3
First two rows unsolved. Then, multiples of 16n (n from 0 to 5) and 3n (n from 6 to 1). Note that exponents add up to 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | transcription | factors | note | -marginalia | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 6 | 2 | 8 | 9 | _ | 6 | 2 | 5 | 562890625 | 58 x 11 x 131 | |||
3 | 6 | 6 | 8 | 7 | 5 | . | . | . | 366875 | 54 x 587 | |||
7 | 2 | 9 | . | . | . | . | . | . | 729 | 36 | |||
3 | 8 | 8 | 8 | . | . | . | . | . | 3888 | 16 x 35 | |||
2 | _ | 7 | 3 | 6 | . | . | . | . | 20735 | 162 x 34 | |||
1 | 1 | _ | 5 | 9 | 2 | . | . | . | 110592 | 163 x 33 | |||
. | 5 | 8 | 9 | 8 | 2 | 4 | . | . | 589824 | 164 x 32 | |||
. | 3 | 1 | 4 | 5 | 7 | 2 | 8 | . | 3145728 | 165 x 3 | "SU(PER) . VII . PARTIENTES" |
Left Side. Column 1, Table 3
Ratios of 7 to 13
Multiples of 7n (n from 0 to 7) and 13n (n from 8 to 1). Note that exponents add up to 8.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | transcription | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|---|
8 | 1 | 5 | 7 | 3 | 0 | 7 | 2 | 1 | 815730721 | 138 | ||
4 | 3 | 9 | 2 | 3 | 9 | 6 | 1 | 9 | 439239619 | 7 x 137 | ||
2 | 3 | 6 | 5 | 1 | 3 | 6 | 4 | 1 | 236513641 | 72 x 136 | ||
1 | 2 | 7 | 3 | 5 | 3 | 4 | 9 | 9 | 127353499 | 73 x 135 | ||
. | 6 | 8 | 5 | 7 | 4 | 9 | 6 | 1 | 68574961 | 74 x 134 | ||
. | 3 | 6 | 9 | 2 | 4 | 9 | 7 | 9 | 36924979 | 75 x 133 | ||
. | 1 | 9 | 8 | 8 | 2 | 6 | 8 | 1 | 19882681 | 76 x 132 | ||
. | 1 | 0 | ? | 0 | 6 | 0 | 5 | 9 | 10?06059 | 77 x 13 | 4th cell obscures “7”, should be 10706059 | "SU(PER) . VI . PARTIENTES" |
Left Side. Column 1, Table 4
cut off after 1 row.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | transcription | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|---|
? | 4 | 3 | 5 | 8 | 8 | 0 | 7 | 6 | ?43588076 | ? |
Left Side. Column 2, Table 1
Powers of 9
8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | transcription (r2l) | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|
. | . | . | . | . | . | . | 9 | 9 | 9 | ||
. | . | . | . | . | . | 1 | 8 | 81 | 92 | ||
. | . | . | . | . | 9 | 2 | 7 | 729 | 93 | ||
. | . | . | . | 1 | 6 | 5 | 6 | 6561 | 94 | ||
. | . | . | 9 | 4 | 0 | 9 | 5 | 59049 | 95 | ||
. | . | 1 | 8 | 8 | 1 | 3 | 5 | 531881 | 96 | ||
. | 9 | 6 | 9 | 2 | 8 | 7 | 4 | 4782969 | 97 | ||
1 | 2 | 7 | 6 | 4 | 0 | 3 | 4 | 43046721 | 98 | "Copulatiu sesquino[vum] et sesquioctava" |
Left Side. Column 2, Table 2
Ratios of 8 to 9
Multiples of 8n (n from 1 to 8) and 9n (n from 7 to 0). Note that exponents add up to 8.
8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | transcription (r2l) | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 5 | 7 | 3 | 6 | 2 | 8 | 3 | 38263752 | 8 x 97 | ||
4 | 2 | 2 | 2 | 1 | 0 | 4 | 3 | 34012224 | 82 x 96 | ||
8 | 8 | 0 | 3 | 3 | 2 | 0 | 3 | 30233088 | 83 x 95 | ||
6 | 5 | 8 | 3 | 7 | 8 | 6 | 2 | 26873856 | 84 x 94 | ||
2 | 7 | 8 | 7 | 8 | 8 | 3 | 2 | 23887872 | 85 x 93 | ||
4 | 6 | 6 | 3 | 3 | 2 | 1 | 2 | 21233664 | 86 x 92 | ||
8 | 6 | 3 | 4 | 7 | 8 | 8 | 1 | 18874368 | 87 x 9 | ||
6 | 1 | 2 | 7 | 7 | 7 | 6 | 1 | 16777216 | 88 | "Copulatiu sesquioctava et sesquiseptiumus" |
Left Side. Column 2, Table 3
Ratios of 8 to 7
Multiples of 8n (n from 7 to 0) and 7n (n from 1 to 8). Note that exponents add up to 8.
8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | transcription (r2l) | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|
4 | 6 | 0 | 0 | 8 | 6 | 4 | 1 | 14680064 | 87 x 7 | ||
6 | 5 | 0 | 5 | 4 | 8 | 2 | 1 | 12845056 | 86 x 72 | ||
4 | 2 | 4 | 9 | 3 | 2 | 1 | 1 | 11239424 | 85 x 73 | ||
6 | 9 | 4 | 4 | 3 | 8 | 9 | . | 9834496 | 84 x 74 | ||
4 | 8 | 1 | 5 | 0 | 6 | 8 | . | 8605184 | 83 x 75 | ||
6 | 3 | 5 | 9 | 2 | 5 | 7 | . | 7529536 | 82 x 76 | ||
4 | 4 | 3 | 8 | 8 | 5 | 6 | . | 6588344 | 8 x 77 | ||
1 | 0 | 8 | 4 | 6 | 7 | 5 | . | 5764801 | 78 | "Copulatiai sesquiseptum et sesquisexta" |
Right Side
Right Side, Column 1, Rows 1-9
Powers of 9
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | transcription (l2r) | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|---|
9 | . | . | . | . | . | . | . | . | 9 | 9 | ||
8 | 1 | . | . | . | . | . | . | . | 81 | 92 | ||
7 | 2 | 9 | . | . | . | . | . | . | 729 | 93 | ||
6 | 5 | 6 | 1 | . | . | . | . | . | 6561 | 94 | ||
5 | 9 | _ | 4 | 9 | . | . | . | . | 59049 | 95 | ||
5 | 3 | 1 | 4 | 4 | 1 | . | . | . | 531441 | 96 | ||
4 | 7 | 8 | 2 | 9 | 6 | 9 | . | . | 4782969 | 97 | ||
4 | 3 | _ | 4 | 6 | 7 | 2 | 1 | . | 43046721 | 98 | ||
3 | 8 | 7 | 4 | 2 | _ | 4 | 8 | 9 | 387420489 | 99 | "SU(PER) OCTO PARTIENTES" |
Right Side, Column 1, Rows 10-18
Ratios of 8 to 9
Multiples of 8n (n from 1 to 9) and 9n (n from 8 to 0). Note that exponents add up to 9.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | transcription (l2r) | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 4 | 4 | 3 | 7 | 3 | 7 | 6 | 8 | 344373768 | 8 x 98 | ||
3 | _ | 6 | 1 | 1 | _ | _ | 1 | 6 | 306110016 | 82 x 97 | ||
2 | 7 | 2 | _ | 9 | 7 | 7 | 9 | 2 | 272097792 | 83 x 96 | ||
2 | 4 | 1 | 8 | 6 | 4 | 7 | _ | 4 | 241864704 | 84 x 95 | ||
2 | 1 | 4 | 9 | 9 | _ | 8 | 4 | 8 | 214990848 | 85 x 94 | ||
1 | 9 | 1 | 1 | _ | 2 | 9 | 7 | 6 | 191102976 | 86 x 93 | ||
1 | 6 | 9 | 8 | 6 | 9 | 3 | 1 | 2 | 169869312 | 87 x 92 | ||
1 | 5 | _ | 9 | 9 | 4 | 9 | 4 | 4 | 150994944 | 88 x 9 | ||
1 | 3 | 4 | 2 | 1 | 7 | 7 | 2 | 8 | 134217728 | 89 | "SU(PER) 7 PARTIENTES" |
Right Side, Column 1, Rows 19-27
Ratios of 8 to 7
Multiples of 8n (n from 8 to 0) and 7n (n from 1 to 9). Note that exponents add up to 9.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | transcription (l2r) | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 7 | 4 | 4 | _ | 5 | 1 | 2 | 117440512 | 88 x 7 | ||
1 | _ | 2 | 7 | 6 | _ | 4 | 4 | 8 | 102760448 | 87 x 72 | ||
. | 8 | 9 | 9 | 1 | 5 | 3 | 9 | 2 | 89915392 | 86 x 73 | ||
. | 7 | 8 | 6 | 7 | 5 | 9 | 6 | 8 | 78675968 | 85 x 74 | ||
. | 6 | 8 | 8 | 4 | 1 | 4 | 7 | 2 | 68841472 | 84 x 75 | ||
. | 6 | 2 | 3 | 6 | 2 | 8 | 8 | 60236288 | 83 x 76 | |||
. | 5 | 2 | 7 | 6 | 7 | 5 | 2 | 52706752 | 82 x 77 | |||
. | 4 | 6 | 1 | 1 | 8 | 4 | 8 | 46118408 | 8 x 78 | "SU(PER) 6 PARTIENTES" | ||
. | 4 | 3 | 5 | 3 | 6 | 7 | 40353607 | 79 |
Right Side, Column 2, Rows 1-9
Ratios of 17 to 9
Multiples of 17n (n from 9 to 1) and 9n (n from 0 to 8). Note that exponents add up to 9.
12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | transcription (r2l) | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7 | 9 | 4 | 6 | 7 | 8 | 7 | 8 | 5 | 8 | 1 | 1 | 118587876497 | 179 | ||
9 | 6 | 9 | 6 | 1 | 8 | 1 | 8 | 7 | 2 | 6 | . | 62781816969 | 178 x 9 | ||
3 | 1 | 5 | 2 | 3 | 4 | 7 | 3 | 2 | 3 | 3 | . | 33237432513 | 177 x 92 | ||
1 | _ | 8 | 7 | 8 | 2 | 6 | 9 | 5 | 7 | 1 | . | 17596287801 | 176 x 93 | ||
7 | 7 | 7 | 1 | 8 | 6 | 5 | 1 | 3 | 9 | . | . | 9315681777 | 175 x 94 | ||
9 | 2 | 5 | 1 | 3 | 8 | 1 | 3 | 9 | 4 | . | . | 4931831529 | 174 x 95 | ||
3 | 3 | 6 | 9 | 6 | 9 | _ | 1 | 6 | 2 | . | . | 2610969633 | 173 x 96 | ||
1 | 4 | _ | 8 | 7 | 2 | 2 | 8 | 3 | 1 | . | . | 1382278041 | 172 x 97 | ||
7 | 5 | 2 | 4 | 9 | 7 | 1 | 3 | 7 | ( ) | . | . | 731794257 | 17 x 98 |
Right Side, Column 2, Rows 10-12
Ratios of 9 to 5?
12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | transcription (r2l) | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 7 | 3 | 9 | 5 | 3 | 3 | 4 | 4 | 8 | 3 | . | 38443359375 | 97 x 59 | ||
. | . | . | 5 | 2 | 1 | 3 | _ | 5 | _ | 2 | . | 20503125 | 96 x 55 | ||
. | . | . | . | . | . | 5 | 3 | 9 | _ | 1 | . | 10935 | 95 x 5 |
Right Side, Column 2, Rows 13-18
Ratios of 16 to 3?
Multiples of 2n (n = 3,7,11,15,19) and 3n (n= 6 to 1). The product increases 16x (24) between rows.
12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | transcription (r2l) | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
. | . | . | . | . | . | 2 | 3 | 8 | 5 | . | . | 5832 | 23 x 36 | ||
. | . | . | . | . | 4 | _ | 1 | 1 | 3 | . | . | 31104 | 27 x 35 | ||
. | . | . | . | 8 | 8 | 8 | 5 | 6 | 1 | . | . | 165888 | 211 x 34 | ||
. | . | . | 6 | 3 | 7 | 4 | 8 | 8 | . | . | . | 884736 | 215 x 33 | ||
. | . | 2 | 9 | 5 | 8 | 1 | 7 | 4 | . | . | . | 4718592 | 219 x 32 | ||
. | 4 | 2 | 8 | 5 | 6 | 1 | 5 | 2 | . | . | . | 25165824 | 223 x 3 |
Right Side, Column 2, Rows 19-27
Ratios of 13 to 7
Multiples of 13n (n from 9 to 1) and 7n (n from 0 to 8). Note that exponents add up to 9.
12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | transcription (r2l) | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 7 | 3 | 9 | 9 | 4 | 4 | _ | 6 | . | 1 | . | 10604499373 | 139 | ||
7 | 4 | _ | 5 | 1 | 1 | _ | 1 | 7 | 5 | . | . | 5710115047 | 138 x 7 | ||
3 | 3 | 3 | 7 | 7 | 6 | 4 | 7 | _ | 3 | . | . | 3074677333 | 137 x 72 | ||
7 | 8 | 4 | 5 | 9 | 5 | 5 | 5 | 6 | 1 | . | . | 1655595487 | 136 x 73 | ||
3 | 9 | 4 | 4 | 7 | 4 | 1 | 9 | 8 | . | . | . | 891474493 | 135 x 74 | ||
7 | 2 | 7 | 4 | 2 | _ | _ | 8 | 4 | . | . | . | 480024727 | 134 x 75 | ||
3 | 5 | 8 | 4 | 7 | 4 | 8 | 5 | 2 | . | . | . | 258474853 | 133 x 76 | ||
7 | 6 | 7 | 8 | 7 | 1 | 9 | 3 | 1 | . | . | . | 139178767 | 132 x 177 | ||
3 | 1 | 4 | 2 | 4 | 9 | 4 | 7 | ( ) | . | . | . | 74942413 | 13 x 78 |
Right Side, Column 2, Rows 28-29
Ratios of 11 (cut off)
12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | transcription (r2l) | factors | note | -marginalia |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 9 | 6 | 7 | 4 | 9 | 7 | 5 | 3 | 2 | . | . | 2357947691 | 119 | ||
6 | 8 | 2 | 3 | 5 | 1 | 6 | 8 | 2 | 1 | . | . | 1286153286 | 2 x 3 x 118 |
Background
The numbers are "apices" of early Arabic numbers.
in a table from "Histoire de la Mathematique" by J.E. Montucla, published in 1757