Difference between revisions of "Polygon Area"

From MagnetoWiki
Jump to navigation Jump to search
m
(Update MathWorld links to HTTPS)
 
Line 2: Line 2:
  
 
see Polygon Area at :
 
see Polygon Area at :
:Weisstein, Eric W. "Polygon Area." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PolygonArea.html
+
:Weisstein, Eric W. "Polygon Area." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PolygonArea.html
  
 
If the polygon is a lattice polygon,  then area can be calculated from the number of interior lattice points by Picks theorem:
 
If the polygon is a lattice polygon,  then area can be calculated from the number of interior lattice points by Picks theorem:
Line 8: Line 8:
 
SInce all the outlines in MindsEye are on a pixelated grid, this may be the fastest way to calculate the area.
 
SInce all the outlines in MindsEye are on a pixelated grid, this may be the fastest way to calculate the area.
  
:Weisstein, Eric W. "Lattice Polygon." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LatticePolygon.html
+
:Weisstein, Eric W. "Lattice Polygon." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LatticePolygon.html
  
  

Latest revision as of 14:19, 7 September 2022

To calculate the area of a non-self-intersecting polygon:

see Polygon Area at :

Weisstein, Eric W. "Polygon Area." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PolygonArea.html

If the polygon is a lattice polygon, then area can be calculated from the number of interior lattice points by Picks theorem:

A = I + B/2 - 1, where I = # of interior lattice points, B = # of border points

SInce all the outlines in MindsEye are on a pixelated grid, this may be the fastest way to calculate the area.

Weisstein, Eric W. "Lattice Polygon." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LatticePolygon.html


see also Randall Crandall Projects in Scientific Computation ISBN-10: 0387950095 (but I forget why this book is relevant)