Line 33:
Line 33:
===Left Side, Column 1, Table 1===
===Left Side, Column 1, Table 1===
−
Multiples of 9<sup>n</sup> (n from 0 to 7) and 17<sup>n</sup> (n from 8 to 1)
+
Multiples of 9<sup>n</sup> (n from 0 to 7) and 17<sup>n</sup> (n from 8 to 1). Note that exponents of the two factors add up to 8.
<tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top>
<tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top>
Line 45:
Line 45:
1 5 3 5 8 6 4 4 9 153586449 9<sup>6</sup> x 17<sup>2</sup>
1 5 3 5 8 6 4 4 9 153586449 9<sup>6</sup> x 17<sup>2</sup>
_ 8 1 3 1 _ 4 7 3 081310473 9<sup>7</sup> x 17 SUE OCTO PARTIENT
_ 8 1 3 1 _ 4 7 3 081310473 9<sup>7</sup> x 17 SUE OCTO PARTIENT
+
</tab>
+
+
+
===Left Side, Column 1, Table 2===
+
+
First two roles unsolved. Then, multiples of 16<sup>n</sup> (n from 0 to 5) and 3<sup>n</sup> (n from 6 to 1). Note that exponents add up to 6.
+
+
<tab class="wikitable" border = "1" cellspacing="3" cellpadding = "3" head = "top>
+
5 6 2 8 9 _ 6 2 5 562890625 5<sup>8</sup> x 11 x 131
+
3 6 6 8 7 5 . . . 366875 5<sup>4</sup> x 587
+
7 2 9 . . . . . . 729 3<sup>6</sup>
+
3 8 8 8 . . . . . 3888 16 x 3<sup>5</sup>
+
2 _ 7 3 6 . . . . 20735 16<sup>2</sup> x 3<sup>4</sup>
+
1 1 _ 5 9 2 . . . 110592 16<sup>3</sup> x 3<sup>3</sup>
+
. 5 8 9 8 2 4 . . 589824 16<sup>4</sup> x 3<sup>2</sup>
+
. 3 1 4 5 7 2 8 . 3145728 16<sup>5</sup> x 3 SUE 7 PARTIENTES
</tab>
</tab>